Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.175
Filtrar
1.
Sci Rep ; 14(1): 8649, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622183

RESUMO

Potentially fatal fungal sphenoid sinusitis (FSS) causes visual damage. However, few studies have reported on its visual impairment and prognosis. Five hundred and eleven FSS patients with ocular complications treated at Beijing Tongren Hospital were recruited and clinical features and visual outcomes were determined. Thirty-two of the 511 patients (6%) had visual impairment, with 13 and 19 patients having invasive and noninvasive FSS, respectively. Eighteen patients (56.25%) had diabetes and 2 patient (6.25%) had long-term systemic use of antibiotics (n = 1) and corticosteroids (n = 1). All patients had visual impairment, which was more severe in invasive FSS than in noninvasive FSS. Bony wall defects and sclerosis were observed in 19 patients (59.38%), and 11 patients (34.38%) had microcalcification in their sphenoid sinusitis on computed tomography (CT). After a 5-year follow-up, three patients (9.38%) died. Patients with noninvasive FSS had a higher improvement rate in visual acuity than their counterparts. In the multivariate analysis, sphenoid sinus wall sclerosis on CT was associated with better visual prognosis. FSS can cause vision loss with persistent headaches, particularly in those with diabetes. CT showed the sphenoid sinus wall sclerosis, indicating a better visual prognosis in FSS with visual impairment.


Assuntos
Diabetes Mellitus , Micoses , Sinusite , Sinusite Esfenoidal , Baixa Visão , Humanos , Sinusite Esfenoidal/complicações , Sinusite Esfenoidal/diagnóstico por imagem , Esclerose , Sinusite/complicações , Sinusite/diagnóstico por imagem , Sinusite/microbiologia , Micoses/complicações , Transtornos da Visão/complicações , Baixa Visão/complicações , Estudos Retrospectivos
2.
Adv Sci (Weinh) ; : e2306318, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38629780

RESUMO

Polyploidization and depolyploidization are critical processes in the normal development and tissue homeostasis of diploid organisms. Recent investigations have revealed that polyaneuploid cancer cells (PACCs) exploit this ploidy variation as a survival strategy against anticancer treatment and for the repopulation of tumors. Unscheduled polyploidization and chromosomal instability in PACCs enhance malignancy and treatment resistance. However, their inability to undergo mitosis causes catastrophic cellular death in most PACCs. Adaptive ploid reversal mechanisms, such as multipolar mitosis, centrosome clustering, meiosis-like division, and amitosis, counteract this lethal outcome and drive cancer relapse. The purpose of this work is to focus on PACCs induced by cytotoxic therapy, highlighting the latest discoveries in ploidy dynamics in physiological and pathological contexts. Specifically, by emphasizing the role of "poly-depolyploidization" in tumor progression, the aim is to identify novel therapeutic targets or paradigms for combating diseases associated with aberrant ploidies.

3.
Nat Commun ; 15(1): 3149, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605037

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) develops through step-wise genetic and molecular alterations including Kras mutation and inactivation of various apoptotic pathways. Here, we find that development of apoptotic resistance and metastasis of KrasG12D-driven PDAC in mice is accelerated by deleting Plk3, explaining the often-reduced Plk3 expression in human PDAC. Importantly, a 41-kDa Plk3 (p41Plk3) that contains the entire kinase domain at the N-terminus (1-353 aa) is activated by scission of the precursor p72Plk3 at Arg354 by metalloendopeptidase nardilysin (NRDC), and the resulting p32Plk3 C-terminal Polo-box domain (PBD) is removed by proteasome degradation, preventing the inhibition of p41Plk3 by PBD. We find that p41Plk3 is the activated form of Plk3 that regulates a feed-forward mechanism to promote apoptosis and suppress PDAC and metastasis. p41Plk3 phosphorylates c-Fos on Thr164, which in turn induces expression of Plk3 and pro-apoptotic genes. These findings uncover an NRDC-regulated post-translational mechanism that activates Plk3, establishing a prototypic regulation by scission mechanism.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Camundongos , Animais , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/patologia , Metaloendopeptidases/genética , Metaloendopeptidases/metabolismo
4.
Clin Respir J ; 18(4): e13752, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38606731

RESUMO

BACKGROUND: Lung Large cell neuroendocrine carcinoma (LCNEC) is a rare, aggressive, high-grade neuroendocrine carcinoma with a poor prognosis, mainly seen in elderly men. To date, we have found no studies on predictive models for LCNEC. METHODS: We extracted data from the Surveillance, Epidemiology, and End Results (SEER) database of confirmed LCNEC from 2010 to 2018. Univariate and multivariate Cox proportional risk regression analyses were used to identify independent risk factors, and then we constructed a novel nomogram and assessed the predictive effectiveness by receiver operating characteristic (ROC) curves, calibration curves, and decision curve analysis (DCA). RESULTS: A total of 2546 patients with LCNEC were included, excluding those diagnosed with autopsy or death certificate, tumor, lymph node, metastasis (TNM) stage, tumor grade deficiency, etc., and finally, a total of 743 cases were included in the study. After univariate and multivariate analyses, we concluded that the independent risk factors were N stage, intrapulmonary metastasis, bone metastasis, brain metastasis, and surgical intervention. The results of ROC curves, calibration curves, and DCA in the training and validation groups confirmed that the nomogram could accurately predict the prognosis. CONCLUSIONS: The nomogram obtained from our study is expected to be a useful tool for personalized prognostic prediction of LCNEC patients, which may help in clinical decision-making.


Assuntos
Carcinoma Neuroendócrino , Neoplasias Pulmonares , Idoso , Masculino , Humanos , Prognóstico , Carcinoma Neuroendócrino/epidemiologia , Neoplasias Pulmonares/epidemiologia , Tomada de Decisão Clínica , Pulmão
5.
Plant J ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38558071

RESUMO

Verticillium wilt (VW) is a devasting disease affecting various plants, including upland cotton, a crucial fiber crop. Despite its impact, the genetic basis underlying cotton's susceptibility or defense against VW remains unclear. Here, we conducted a genome-wide association study on VW phenotyping in upland cotton and identified a locus on A13 that is significantly associated with VW resistance. We then identified a cystathionine ß-synthase domain gene at A13 locus, GhCBSX3A, which was induced by Verticillium dahliae. Functional analysis, including expression silencing in cotton and overexpression in Arabidopsis thaliana, confirmed that GhCBSX3A is a causal gene at the A13 locus, enhancing SAR-RBOHs-mediated apoplastic oxidative burst. We found allelic variation on the TATA-box of GhCBSX3A promoter attenuated its expression in upland cotton, thereby weakening VW resistance. Interestingly, we discovered that altered artificial selection of GhCBSX3A_R (an elite allele for VW) under different VW pressures during domestication and other improved processes allows specific human needs to be met. Our findings underscore the importance of GhCBSX3A in response to VW, and we propose a model for defense-associated genes being selected depending on the pathogen's pressure. The identified locus and gene serve as promising targets for VW resistance enhancement in cotton through genetic engineering.

6.
Front Plant Sci ; 15: 1330854, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38567128

RESUMO

MicroRNAs (miRNAs) are of significance in tuning and buffering gene expression. Despite abundant analysis tools that have been developed in the last two decades, plant miRNA identification from next-generation sequencing (NGS) data remains challenging. Here, we show that we can train a convolutional neural network to accurately identify plant miRNAs from NGS data. Based on our methods, we also present a user-friendly pure Java-based software package called Small RNA-related Intelligent and Convenient Analysis Tools (SRICATs). SRICATs encompasses all the necessary steps for plant miRNA analysis. Our results indicate that SRICATs outperforms currently popular software tools on the test data from five plant species. For non-commercial users, SRICATs is freely available at https://sourceforge.net/projects/sricats.

7.
PLoS One ; 19(4): e0301239, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38635505

RESUMO

The retinal pigment epithelium (RPE) is essential to maintain retinal function, and RPE cell death represents a key pathogenic stage in the progression of several blinding ocular diseases, including age-related macular degeneration (AMD). To identify pathways and compounds able to prevent RPE cell death, we developed a phenotypic screening pipeline utilizing a compound library and high-throughput screening compatible assays on the human RPE cell line, ARPE-19, in response to different disease relevant cytotoxic stimuli. We show that the metabolic by-product of the visual cycle all-trans-retinal (atRAL) induces RPE apoptosis, while the lipid peroxidation by-product 4-hydroxynonenal (4-HNE) promotes necrotic cell death. Using these distinct stimuli for screening, we identified agonists of the aryl hydrocarbon receptor (AhR) as a consensus target able to prevent both atRAL mediated apoptosis and 4-HNE-induced necrotic cell death. This works serves as a framework for future studies dedicated to screening for inhibitors of cell death, as well as support for the discussion of AhR agonism in RPE pathology.


Assuntos
Ensaios de Triagem em Larga Escala , Epitélio Pigmentado da Retina , Humanos , Epitélio Pigmentado da Retina/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Apoptose , Morte Celular , Estresse Oxidativo
8.
BMJ Glob Health ; 9(4)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637119

RESUMO

INTRODUCTION: To examine the impact of the COVID-19 pandemic on mortality, we estimated excess all-cause mortality in 24 countries for 2020 and 2021, overall and stratified by sex and age. METHODS: Total, age-specific and sex-specific weekly all-cause mortality was collected for 2015-2021 and excess mortality for 2020 and 2021 was calculated by comparing weekly 2020 and 2021 age-standardised mortality rates against expected mortality, estimated based on historical data (2015-2019), accounting for seasonality, and long-term and short-term trends. Age-specific weekly excess mortality was similarly calculated using crude mortality rates. The association of country and pandemic-related variables with excess mortality was investigated using simple and multilevel regression models. RESULTS: Excess cumulative mortality for both 2020 and 2021 was found in Austria, Brazil, Belgium, Cyprus, England and Wales, Estonia, France, Georgia, Greece, Israel, Italy, Kazakhstan, Mauritius, Northern Ireland, Norway, Peru, Poland, Slovenia, Spain, Sweden, Ukraine, and the USA. Australia and Denmark experienced excess mortality only in 2021. Mauritius demonstrated a statistically significant decrease in all-cause mortality during both years. Weekly incidence of COVID-19 was significantly positively associated with excess mortality for both years, but the positive association was attenuated in 2021 as percentage of the population fully vaccinated increased. Stringency index of control measures was positively and negatively associated with excess mortality in 2020 and 2021, respectively. CONCLUSION: This study provides evidence of substantial excess mortality in most countries investigated during the first 2 years of the pandemic and suggests that COVID-19 incidence, stringency of control measures and vaccination rates interacted in determining the magnitude of excess mortality.


Assuntos
COVID-19 , Feminino , Masculino , Humanos , Pandemias , Itália , Grécia , Fatores Etários
9.
J Behav Med ; 47(3): 422-433, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38587765

RESUMO

Many studies have examined behavioral and social drivers of COVID-19 vaccination initiation, but few have examined these drivers longitudinally. We sought to identify the drivers of COVID-19 vaccination initiation using the Behavioral and Social Drivers of Vaccination (BeSD) Framework. Participants were a nationally-representative sample of 1,563 US adults who had not received a COVID-19 vaccine by baseline. Participants took surveys online at baseline (spring 2021) and follow-up (fall 2021). The surveys assessed variables from BeSD Framework domains (i.e., thinking and feeling, social processes, and practical issues), COVID-19 vaccination initiation, and demographics at baseline and follow-up. Between baseline and follow-up, 65% of respondents reported initiating COVID-19 vaccination. Vaccination intent increased from baseline to follow-up (p < .01). Higher vaccine confidence, more positive social norms towards vaccination, and receiving vaccine recommendations at baseline predicted subsequent COVID-19 vaccine initiation (all p < .01). Among factors assessed at follow-up, social responsibility and vaccine requirements had the greatest associations with vaccine initiation (all p < .01). Baseline vaccine confidence, social norms, and vaccination recommendations were associated with subsequent vaccine initiation, all of which could be useful targets for behavioral interventions. Furthermore, interventions that highlight social responsibility to vaccinate or promote vaccination requirements could also be beneficial.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Adulto , Humanos , Estudos Longitudinais , Cognição , Vacinação
10.
Acta Psychol (Amst) ; 246: 104248, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38598923

RESUMO

Well-being is one of the central topics in psychology, and research on this topic has shifted from emotional experiences to flourishing life in recent years. Seligman's PERMA model is a prominent theory in this shift. However, this model is proposed in Western culture and has yet to be empirically validated in the Chinese context. The present research aims to examine the applicability of the five-dimension PERMA-Profiler in Chinese culture, which has been developed based on the PERMA model. A sample of 1468 Chinese adults participated in the research. After translation and validation, a series of psychometric analyses were conducted to examine the internal consistency reliability, construct validity, convergent and discriminant validity, and factorial invariance across genders. The PERMA-Profiler Chinese showed high Cronbach's alpha coefficients (α = 0.79-0.88), good divergent (r = -0.19 to -0.38) and convergent validity (r = 0.53-0.85), as well as satisfactory structural validity. Results of the structural validity demonstrated a better fit to the first-order model with five correlated factors after modification (χ2/df = 4.65, RMSEA = 0.058, SRMR = 0.030, CFI = 0.943, TLI = 0.924) than the second-order model with a higher-order factor of well-being. However, the engagement dimension of the PERMA-Profiler Chinese could be improved further. In conclusion, the PERMA model is applicable to the Chinese culture, and the PERMA-Profiler provides a valid measure of well-being for Chinese adults.

11.
Artigo em Inglês | MEDLINE | ID: mdl-38584556

RESUMO

BACKGROUND: Ultra-performance Liquid Chromatography-tandem Mass Spectrometry (UPLC-MS/MS) is widely used for concentration detection of many Tyrosine Kinase Inhibitors (TKIs), including afatinib, crizotinib, and osimertinib. In order to analyze whether pralsetinib takes effect in Rearranged during Transfection (RET)-positive patients with central nervous system metastasis, we aimed to develop a method for the detection of pralsetinib concentrations in human plasma and Cerebrospinal Fluid (CSF) by UPLC-MS/MS. METHODS: The method was developed using the external standard method, and method validation included precision, accuracy, stability, extraction recovery, and matrix effect. Working solutions were all obtained based on stock solutions of pralsetinib of 1mg/mL. The plasma/CSF samples were precipitated by acetonitrile for protein precipitation and then separated on an ACQUITY UPLC HSS T3 column (2.1×100 mm, 1.8 µm) with a gradient elution using 0.1% formic acid (solution A) and acetonitrile (solution B) as mobile phases at a flow rate of 0.4 mL/min. The tandem mass spectrometry was performed by a triple quadrupole linear ion trap mass spectrometry system (QTRAPTM 6500+) with an electrospray ion (ESI) source and Analyst 1.7.2 data acquisition system. Data were collected in Multiple Reaction Monitoring (MRM) and positive ionization mode. RESULTS: A good linear relationship of pralsetinib in both plasma and CSF was successfully established, and the calibration ranges were found to be 1.0-64.0 µg/mL and 50.0ng/mL-12.8 µg/mL for pralsetinib in the plasma and CSF, respectively. Validation was performed, including calibration assessment, selectivity, precision, accuracy, matrix effect, extraction recovery, and stability, and all results have been found to be acceptable. The method has been successfully applied to pralsetinib concentration detection in a clinical sample, and the concentrations have been found to be 475ng/mL and 61.55 µg/mL in the CSF and plasma, respectively. CONCLUSION: We have developed a quick and effective method for concentration detection in both plasma and CSF, and it can be applied for drug monitoring in clinical practice. The method can also provide a reference for further optimization.

12.
Artigo em Inglês | MEDLINE | ID: mdl-38587806

RESUMO

Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory disease of the airways, it is characterized by impaired lung function induced by cigarette smoke (CS). Reduced DACH1 expression has a detrimental role in numerous disorders. However, its role in COPD remains understudied. This study aims to elucidate the role and underlying mechanism of DACH1 in airway inflammation of COPD. DACH1 expression was measured in lung tissues of patients with COPD. Airway epithelium-specific DACH1 knockdown mice and AAV-transfected DACH1 overexpressed mice were used to investigate its role and potential for therapeutic targeting in experimental COPD caused by CS. Furthermore, we discovered a potential mechanism of DACH1 in inflammation induced by cigarette smoke extract simulation (CSE) in vitro. Compared to non-smokers and smokers without COPD, COPD patients had reduced DACH1 expression, especially in the airway epithelium. Airway epithelium-specific DACH1 knockdown aggravated mice airway inflammation and lung function decline caused by CS, whereas DACH1 overexpression protected mice from airway inflammation and lung function decline. DACH1 knockdown and overexpression promoted and inhibited IL-6 and IL-8 secretion in 16 HBE cells after CSE simulation, respectively. Nuclear factor erythroid 2-related factor 2 (NRF2) was discovered to be a novel downstream target of DACH1, which binds directly to its promoter. By activating NRF2 signaling, DACH1 induction reduced inflammation. DACH1 levels are lower in smokers and nonsmoking COPD patients when compared to nonsmokers. DACH1 has protective effects against inflammation induced by CS by activating NRF2 signaling pathway. Targeting DACH1 is a potentially viable therapeutic approach for COPD treatment.

14.
Molecules ; 29(6)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38542904

RESUMO

Ginseng holds high medicinal and cosmetic value, with stem and leaf extracts garnering attention for their abundant bioactive ingredients. Meanwhile, fermentation can enhance the effectiveness of cosmetics. The aim of this study was to optimize ginseng fermentation to produce functional cosmetics. Ginseng stem and leaf extracts were fermented with five different strains of lactic acid bacteria. Using 2,2-diphenyl-1-picrylhydrazyl (DPPH), hydroxyl radical (·OH), and superoxide anion (O2·-) scavenging activities as indicators, the fermentation process was optimized via response surface methodology. Finally, validation of the antioxidant activity of the optimized fermentation broth was performed using human skin cells (HaCaT and BJ cells). Based on the antioxidant potency composite comprehensive index, Lactiplantibacillus plantarum 1.140 was selected, and the optimized parameters were a fermentation time of 35.50 h, an inoculum size of 2.45%, and a temperature of 28.20 °C. Optimized fermentation boosted antioxidant activity: DPPH scavenging activity increased by 25.00%, ·OH by 94.00%, and O2·- by 73.00%. Only the rare ginsenoside Rg5 showed a substantial rise in content among the 11 ginsenosides examined after fermentation. Furthermore, the flavonoid content and ·OH scavenging activity were significantly negatively correlated (r = -1.00, p < 0.05), while the Rh1 content and O2·- scavenging activity were significantly positively correlated (r = 0.998, p < 0.05). Both the 0.06% (v/v) and 0.25% (v/v) concentrations of the optimized broth significantly promoted cell proliferation, and notable protective effects against oxidative damage were observed in HaCaT cells when the broth was at 0.06%. Collectively, we demonstrated that ginseng fermentation extract effectively eliminates free radicals, preventing and repairing cellular oxidative damage. This study has identified new options for the use of fermented ginseng in functional cosmetics.


Assuntos
Antioxidantes , Panax , Humanos , Antioxidantes/química , Lactobacillus/metabolismo , Fermentação , Extratos Vegetais/farmacologia , Panax/química
15.
Exp Cell Res ; 437(1): 113992, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38492634

RESUMO

BACKGROUND: Hepatic fibrosis, a common pathological process that occurs in end-stage liver diseases, is a serious public health problem and lacks effective therapy. Notoginsenoside R1 (NR1) is a small molecule derived from the traditional Chinese medicine Sanqi, exhibiting great potential in treating diverse metabolie disorders. Here we aimed to enquired the role of NR1 in liver fibrosis and its underlying mechanism in hepatoprotective effects. METHODS: We investigated the anti-fibrosis effect of NR1 using CCl4-induced mouse mode of liver fibrosis as well as TGF-ß1-activated JS-1, LX-2 cells and primary hepatic stellate cell. Cell samples treated by NR1 were collected for transcriptomic profiling analysis. PPAR-γ mediated TGF-ß1/Smads signaling was examined using PPAR-γ selective inhibitors and agonists intervention, immunofluorescence staining and western blot analysis. Additionally, we designed and studied the binding of NR1 to PPAR-γ using molecular docking. RESULTS: NR1 obviously attenuated liver histological damage, reduced serum ALT, AST levels, and decreased liver fibrogenesis markers in mouse mode. Mechanistically, NR1 elevated PPAR-γ and decreased TGF-ß1, p-Smad2/3 expression. The TGF-ß1/Smads signaling pathway and fibrotic phenotype were altered in JS-1 cells after using PPAR-γ selective inhibitors and agonists respectively, confirming PPAR-γ played a pivotal protection role inNR1 treating liver fibrosis. Further molecular docking indicated NR1 had a strong binding tendency to PPAR-γ with minimum free energy. CONCLUSIONS: NR1 attenuates hepatic stellate cell activation and hepatic fibrosis by elevating PPAR-γ to inhibit TGF-ß1/Smads signalling. NR1 may be a potential candidate compound for reliving liver fibrosis.


Assuntos
Ginsenosídeos , Células Estreladas do Fígado , Fator de Crescimento Transformador beta1 , Animais , Camundongos , Fibrose , Células Estreladas do Fígado/metabolismo , Fígado/metabolismo , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/genética , Simulação de Acoplamento Molecular , PPAR gama/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
16.
Exp Ther Med ; 27(4): 137, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38476892

RESUMO

Endothelial dysfunction caused by the stimulation of endothelial microparticles (EMPs) by the inflammatory factor IL-6 is one of the pathogenic pathways associated with Perthes disease. The natural active product biochanin A (BCA) has an anti-inflammatory effect; however, whether it can alleviate endothelial dysfunction in Perthes disease is not known. The present in vitro experiments on human umbilical vein endothelial cells showed that 0-100 pg/ml IL-6-EMPs could induce endothelial dysfunction in a concentration-dependent manner, and the results of the Cell Counting Kit 8 assay revealed that, at concentrations of <20 µM, BCA had no cytotoxic effect. Reverse transcription-quantitative PCR demonstrated that BCA reduced the expression levels of the endothelial dysfunction indexes E-selectin and intercellular cell adhesion molecule-1 (ICAM-1) in a concentration-dependent manner. Immunofluorescence and western blotting illustrated that BCA increased the expression levels of zonula occludens-1 and decreased those of ICAM-1. Mechanistic studies showed that BCA inhibited activation of the NFκB pathway. In vivo experiments demonstrated that IL-6 was significantly increased in the rat model of ischemic necrosis of the femoral head, whereas BCA inhibited IL-6 production. Therefore, in Perthes disease, BCA may inhibit the NFκB pathway to suppress IL-6-EMP-induced endothelial dysfunction, and could thus be regarded as a potential treatment for Perthes disease.

17.
Ying Yong Sheng Tai Xue Bao ; 35(1): 124-132, 2024 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-38511448

RESUMO

Microbial necromass carbon (MNC) is an important contributor to soil organic carbon (SOC). Soil carbon storage has increased significantly since the return of farmland to forestland (grassland) on the Loess Plateau. However, the contribution of MNC to SOC accumulation in different vegetation types and the influence factors remain unclear. Herein, we used the biomarker (amino sugar) technique to determine the MNC content and analyzed the influencing factors in 0-5 cm and 5-20 cm soil layers of natural grassland, shrubland (Caragana microphylla), and forestland (Quercus liaodongensis) in the Loess Plateau. The results showed that: 1) the soil pH decreased significantly from grassland to shrubland and then to forestland within the same soil layer. However, the SOC, total nitrogen (TN), microbial biomass carbon (MBC), and microbial biomass nitrogen (MBN) contents showed a reverse trend, with forestland displaying the highest values followed by shrubland and then grassland. The 0-5 cm had significantly higher values than the 5-20 cm depth. 2) The MNC contents varied 0.69-16.41 g·kg-1 in the two soil horizons of the three vegetation types. There were significant increases in the contents of bacterial necromass carbon (BNC), fungal necromass carbon (FNC), and MNC in the 0-5 cm soil from grassland, shrubland to forestland. The contents of MBC were 1.9 times higher in forestland than in shrubland, and 3.2 times higher in shrubland than in grassland. In the 5-20 cm soil layer, the contents of FNC and MBC were significantly higher in the forestland than in the shrubland and grassland. The FNC content was significantly higher than that of the BNC, ranging from 1.16 to 9.83 times greater than the BNC. 3) The contribution of MNC to SOC was 0.6 and 0.7 times higher in shrubland and forestland than in grassland, respectively, with FNC accounting for 15.2%-42.7%, and BNC accounting for 1.4%-7.4%. 4) pH, TN, MBC, and MBN were important factors that influenced MNC accumulation. In summary, the variation in vegetation type altered soil nutrients, microbial activity, and soil pH, resulting in forestland and shrubland being more beneficial to the formation and accumulation of MNC, which was dominated by fungi, compared to grassland.


Assuntos
Carbono , Solo , Solo/química , Carbono/análise , Florestas , China , Nitrogênio/análise , Pradaria
18.
Planta ; 259(5): 95, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38512412

RESUMO

MAIN CONCLUSIONS: A novel image-based screening method for precisely identifying genotypic variations in rapeseed RSA under waterlogging stress was developed. Five key root traits were confirmed as good indicators of waterlogging and might be employed in breeding, particularly when using the MFVW approach. Waterlogging is a vital environmental factor that has detrimental effects on the growth and development of rapeseed (Brassica napus L.). Plant roots suffer from hypoxia under waterlogging, which ultimately confers yield penalty. Therefore, it is crucially important to understand the genetic variation of root system architecture (RSA) in response to waterlogging stress to guide the selection of new tolerant cultivars with favorable roots. This research was conducted to investigate RSA traits using image-based screening techniques to better understand how RSA changes over time during waterlogging at the seedling stage. First, we performed a t-test by comparing the relative root trait value between four tolerant and four sensitive accessions. The most important root characteristics associated with waterlogging tolerance at 12 h are total root length (TRL), total root surface area (TRSA), total root volume (TRV), total number of tips (TNT), and total number of forks (TNF). The root structures of 448 rapeseed accessions with or without waterlogging showed notable genetic diversity, and all traits were generally restrained under waterlogging conditions, except for the total root average diameter. Additionally, according to the evaluation and integration analysis of 448 accessions, we identified that five traits, TRL, TRSA, TRV, TNT, and TNF, were the most reliable traits for screening waterlogging-tolerant accessions. Using analysis of the membership function value (MFVW) and D-value of the five selected traits, 25 extremely waterlogging-tolerant materials were screened out. Waterlogging significantly reduced RSA, inhibiting root growth compared to the control. Additionally, waterlogging increased lipid peroxidation, accompanied by a decrease in the activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT). This study effectively improves our understanding of the response of RSA to waterlogging. The image-based screening method developed in this study provides a new scientific guidance for quickly examining the basic RSA changes and precisely predicting waterlogging-tolerant rapeseed germplasms, thus expanding the genetic diversity of waterlogging-tolerant rapeseed germplasm available for breeding.


Assuntos
Brassica napus , Brassica rapa , Melhoramento Vegetal , Plântula/fisiologia , Fenótipo , Genótipo
19.
Sci Rep ; 14(1): 6162, 2024 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-38485743

RESUMO

Marital status is an independent prognostic factor for survival in many types of cancers, but its prognostic impact on patients with prostate cancer (PCa) has not been established. The aim of this study was to explore the independent prognostic factors of PCa and to investigate the effect of marital status on survival outcomes in patients with different stratified by PCa. Using the surveillance, epidemiology, and end results (SEER) database, we collected data on 584,655 PCa patients diagnosed between 1975 and 2019. Marital status was classified as married, divorced, widowed, and single. We used the Kaplan-Meier analysis and single multivariate Cox proportional hazards regression analysis to determine the effect of marital status on overall survival (OS) and cancer-specific survival (CSS). In addition, we performed subgroup analyses for different ages, Gleason score and PSA values, and performed a 1:1 propensity score matching (PSM) to reduce the impact of confounding factors to obtain more accurate matching results. According to our findings, marital status was an independent prognostic factor for the survival of PCa patients and a better prognosis of married patients. Moreover, we also found that factors such as age, TNM stage, Gleason score, and PSA concentration were also considered as important predictors for the prognosis of PCa. The above findings can facilitate early detection and treatment of high-risk PCa patients, prolong their life and reduce family burden.


Assuntos
Antígeno Prostático Específico , Neoplasias da Próstata , Masculino , Humanos , Pontuação de Propensão , Programa de SEER , Estado Civil , Prognóstico
20.
Nanoscale ; 16(13): 6507-6515, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38466175

RESUMO

Recently, metal-halide perovskites have rapidly emerged as efficient light emitters with near-unity quantum yield and size-dependent optical and electronic properties, which have attracted considerable attention from researchers. However, the ultrafast nucleation rate of ionic perovskite counterparts severely limits the in-depth exploration of the growth mechanism of colloidal nanocrystals (NCs). Herein, we used an inorganic ligand nitrosonium tetrafluoroborate (NOBF4) to trigger a slow post-synthesis transformation process, converting non-luminescent Cs4PbBr6 NCs into bright green luminescent CsPbBr3 NCs to elucidate the concrete transformation mechanism via four stages: (i) the dissociation of pristine NCs, (ii) the formation of Pb-Br intermediates, (iii) low-dimensional nanoplatelets (NPLs) and (iv) cubic CsPbBr3 NCs, corresponding to the blue-to-green emission process. The desorption and reorganization of organic ligands induced by NO+ and the involvement of BF4- in the ligand exchange process played pivotal roles in this dissolution-recrystallization of NCs. Moreover, controlled shape evolution from anisotropic NPLs to NCs was investigated through variations in the amount of NOBF4. This further validates that additives exert a decisive role in the symmetry and growth of nanostructured perovskite crystals during phase transition based on the ligand-exchange mechanism. This finding serves as a source of inspiration for the synthesis of highly luminescent CsPbBr3 NCs, providing valuable insights into the chemical mechanism in post-synthesis transformation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...